Predicting the unpredictable: Is the electrical spot price chaotic?

David I. Wilson & Bernard Cheng

Department of Electrotechnology
Auckland University of Technology
New Zealand

diwilson@aut.ac.nz
Outline

1. Electricity in NZ

2. Performance of predictive models

3. Chaos,
 1. how to find it,
 2. Implications of a chaotic spot price

Notice how we didn’t say that it is chaotic
Sustainable electricity

- Continuous & secure
 - Electricity is inelastic
 - and unstorable

- Without adverse effects on
 - Environment
 - Future generations

- Affordable
- Predictable?
Deregulation

- Since 1996
- Problems
 - Self regulating, governed by NZEM, but
 - Market not run effectively.
 - Cannot agree on a set of rules.
 - Security of supply problems.
 - 1st March 2004 - Electricity Commission

Compare to Nordic Pool
Recent news

- **Maui**
 (ref: Blakeley 2003)

- **Project Aqua** — 524MW capacity.
 Cancelled April, $45 million invested.

- **Transmission limitations.** Electricity Commission’s plan on 4th June, pay to reduce demand in Upper South Island.
Spot price

Typical price 5-10c /kWhr
What causes excessive spot prices?

- We expect affected by:
 - Lake levels
 - Derivative (i.e. inflow)

- But this is not always the case in NZ …

- Pricing signal – not timely.
 Infrastructure Stocktake, PwC 2004

- … Unlike the Nordic Pool.

So things are not as simple as they might appear
Hydro level vs. Day in year with Spot Price ($/MWhr) for different ranges:
- 0-75
- 75-150
- >150

Legend:
- Empty
- Full

Axes:
- Spot price
- Time of year
- Hydro level

Graph shows the distribution of spot prices over time and hydro level.
Predictive models

- What can one model?
 - Unit operations: turbines, local climate, aerofoils
 - Countrywide e.g.: transmission
 - Market

- How complex?
 - Blackbox/heuristic
 - Econometric

- Over what time scale?
 - Long term planning (20 years)
 - Medium term (5 years)
 - Days/weeks purchasing
Logistic models

\[C = \frac{F}{1 + e^{\theta_0 + \theta_1 t}} \]

Bolger & Tay, 1987
US models – over predicted

Various predictions

Actual energy use

Predictions started here

25 years!

Ref: Craig et al, 2002
Econometric models

- Considerably more complicated

Electricity Model

Other models

- Spot price
- Overall Usage
- Domestic/Industrial sectors
- Fuel type consumptions
- Emission
- Capital requirements

“Grey” box model

Model predictions

Lake levels & flowrates
Econometric models

New Zealand Electricity Generation

Year GWh pa

- CAE (94) Total
- CAE (02) Total
- MComm (00) Total
- MComm (94) Total
- Historical Elec Gen GWh

Performance (rel. error)
2002 Figures

CAE (2002) 0%
CAE (1994) -11%
MComm (2000) -5%
MComm (1994) -5%
Chaotic systems

Los Angeles, USA
Chaotic systems

- Chaos is deterministic

- A parsimonious representation of complex behaviour

- Chaos is difficult to define
 - Dynamics must be nonlinear
 - But we don’t require stochastic and/or chaotic inputs to be chaotic

- Sensitive to:
 - Parameters & structure
 - Initial conditions

- How can we tell if it is chaotic?
 - Dominant Lyapunov coefficient, $\lambda > 0$
Sensitivity to initial conditions

A discrete chaotic system: Henon’s attractor

\[
x_{k+1} = y_k - 1.4 \, x_k^2 + 1
\]
\[
y_{k+1} = 0.3 \, x_k
\]

Starting from:

\[
\begin{bmatrix}
x_0 \\
y_0
\end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}
\]

But suppose we change the starting point *very slightly*

\[
\begin{bmatrix}
x_0 \\
y_0
\end{bmatrix} = \begin{bmatrix} 1.000001 \\ 1.000001 \end{bmatrix}
\]

Very small \(\Delta x \)
Ways to estimate λ

1. Direct methods
 1. Lots of carefully controlled experiments
 2. Large data sets

2. Jacobian methods
 1. Estimate from the individual Jacobian matrices

Finding Chaos in Noisy Systems, Nychka et al, 1992
Implementation

- Fortran code LENNS (from Nychka et al)
- Standard numerical optimisation routines (BFGS)
- Some technical modifications
- Large computation requirements
 - 50 computers @ 2 hours
 - Embarrassingly parallel
- Matlab for analysis
Weak assumptions on the stationarity of λ

Is there any movement of λ with time?
Spot price & the dominant Lyapunov exponent

![Graph showing the Benmore Spot Price and Lyapunov exponent over time. The graph indicates chaotic and stable periods.]

- Chaotic here
- Stable here

Day #
Work in progress

- Relate λ to observable trends/outcomes
- Compute λ at different frequencies
 - $\frac{1}{2}$ hourly price, 5 min price
 - Is $\lambda = f(\text{sample interval})$?

Technical issues:
1. Time delay
2. Discretisation
3. Steady-state offset?
Consequences of chaos

- Chaotic trends are suboptimal & unsustainable

- Chaotic systems are unpredictable
 - In the medium & long term
 - Emarket http://www.energylink.co.nz/emarket.htm

- Unpredictable price increases affect industrial production.
 - *Infrastructure stocktake reportback*, M. Cullen, 2004

- The chaos may be broken by
 - Changing structure:
 - Opening feedback loops
 - Changing parameters
Conclusions

- Spot price excursions not simply correlated to climate
- Previous demand models are ...
- Spot price exhibits chaos
 - At times
 - Often before excursions
- So can we break the chaotic characteristics?
Questions ?