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Abstract  
 

The development of a sustainable chemical processes aims at optimizing its economic, 
environmental and societal sustainability simultaneously. This can be solved as a 
multi-objective optimization (MOO) problem. However, in real systems, there are many 
uncertainties that affect the performance of a process. These include market fluctuation, 
changes in material properties, manufacturing variations, errors in model prediction etc. In 
order to generate a more robust solution, it is essential to develop a multi-objective 
optimization methodology including uncertainty. This would facilitate the design for 
sustainability.  

 
In this paper, the authors use the Pareto optimization methodology to identify the 

optimal design specifications and operating conditions of chemical processes under 
uncertainties. The objective of this MOO problem is to maximize the overall sustainability of 
the process. The utility of this methodology is demonstrated by a case study based on the 
design of a condensate treatment unit in an ammonia plant. 
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1. Introduction 
 
The sustainability of chemical processes can be achieved by optimizing economic, 

environmental and societal objectives simultaneously. This can be modeled as a 
multi-objective optimization (MOO) problem. Chemical processes come across uncertainties 
throughout process design and operation in the form of manufacturing variations, material 
property variations, market fluctuation, etc. Thus, in order to generate more reliable results, 
it is necessary to incorporate uncertainty in the MOO model. 

 
Many researches have been conducted on solving MOO problems under uncertainty.  

Different approaches, such as stochastic programming, robust stochastic programming, 
probabilistic programming, and fuzzy programming etc. have been put forward. All these 
methods have their own advantages and disadvantages for optimization under uncertainty(1-3). 

 
In this paper, an attempt has been made to develop a generic and systematic 

methodology in design for sustainability via systematic generation & evaluation of 
alternatives. This methodology utilizes the MOO method developed by Mattson and Messac 

(4). By employing Pareto optimization methodology, this methodology aims at identifying the 
optimal design specifications and operating conditions for maximizing the overall 
sustainability of a chemical process under uncertainties. The efficacy of this methodology is 
demonstrated by optimizing the design of a condensate treatment unit in an ammonia plant. 

 
This paper is organized as follows. Section 2 presents a MOO algorithm under 

uncertainty. A case-study from an ammonia synthesis plant is illustrated in Section 3 to 
demonstrate the effectiveness of this methodology while optimizing the design of a 
condensate treatment process. The conclusion and discussion is given in section 4. 
 
2. Methodology for multi-objective optimization under uncertainty 

 
Sustainability metrics proposed by the IChemE and AIChE include environmental, 

economic and societal metrics(5-6). In this work, two dimensions of sustainability are 
considered, economic sustainability and environmental sustainability. The economic 
performance is measured in term of the profitability of a chemical process. The 
environmental performance of chemical process is obtained by multiplying the amount of 
emission with its corresponding environmental impact index (EII).  

Thus, the MOO problem to optimize the economic and environmental sustainability 
under uncertainty can be formulated as, 

 
min.   f i(x,u,ε)  i=1,2,…,n                   (1)   
s.t.    h(x,u,ε) =0 

g(x,u,ε) ≤ 0 
x ∈X, u∈U, ε∈ Ξ                         (2) 

Where, f is the objective function. h and g are the vectors of the equality and inequality 
constraints; x ⊂ Rn, is the n-dimensional of state vector, u ⊂ Rm is the m-dimensional  



decision vector, and ε⊂ RS is the s dimensional uncertainty vector, respectively.  
 
Since only economic and environmental objectives are optimized in the current work, it 

limits the value of n to 2. The impact of equality constraints is the projection of the uncertain 
variables on the state space with some given state variables. This implies that the required 
values of state variables x can be computed by a multivariate integration of the model as a 
function of u andε. Hence, h will be eliminated from the above constraints. 

 
The uncertainties affecting the performance of the process include uncertainty caused 

by stochastic design parameters, and uncertainty associated with the engineering design 
model.(7) In this work, the impact of uncertainty on the performance of the process is 
calculated from both aspects. 

 
The Pareto optimization methodology developed by Mattson & Messac(4) for 

optimizing the sustainability of a process include the following steps: 
  Step 1: To minimize the mean values of multi-objective optimization metrics. 

        min  ),(
_

uxf i     i=1,2,...,n                       (3) 

where 
_

f is the mean of f. 

Step 2: To obtain standard deviations of the response variables σf determined by 

comparison of random input variables x, u and means of x (
_

x ) and u (
_

u ). 

Step 3: To shift the deterministic optimal solution by κσy to be (
_

f + kσy) while 

considering uncertainties. It needs to be explained that k is a positive number corresponding 
to the probability of uncertainty that would happen. It also reflects the reliability of design 
decisions. Table 1 lists the relationship between k and uncertainty probability. If k = 0, that 
means the decision is deterministic, in other words, the decision is made based on the mean 
values of the design parameters. This decision would be unreliable in real world without 
considering uncertainty. In contrast, higher value of k indicates lower probability of 
uncertainty and a more reliable decision. k=6 represents highly reliable decisions 
(“six-sigma” decisions)( 8). 

 
Step 4:  To consider model uncertainty 
The non-deterministic prediction of actual design response is assumed to be defined 

as: 
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Here, α and β denote the multiplicative and additive uncertainties respectively. These 
uncertainties can be estimated by reviewing historical accuracies of chosen modeling 



approaches or by an intentional variable model-fidelity approach.  
 

Table 1.  Relationship between k and the Probability of Uncertainty 
 

K 0.0 0.5 1 1.5 2 3 4 4.5 5 
Probability (%) 100 61.7 31.7 13.4 4.55 0.27 6.4e-5 8e-6 6e-7 

 
Step 5: To obtain the optimal solution based on the expected solution and the 

knowledge gained from the shifted Pareto frontiers from the above steps.  Singh and Lou(9) 
developed a methodology on hierarchical Pareto optimization for the sustainable 
development of industrial ecosystems(9-10). The consideration of uncertainties in decision 
making/ decision analysis will enhance their proposed methodology and enrich the 
knowledge base in design for sustainability. 

 
3. Case study 

 
Process condensate in an ammonia production process (using Kellogg’s technique) 

comprises of discharge from the hydrogen and nitrogen compressor as well as separators in 
adjacent segments. This discharge contains ammonia, methanol, methane, urea and carbon 
dioxide. The condensate in discharge cannot be disposed directly due to its harmful 
environmental impacts. Moreover, it would also lead to loss of useful raw material such as 
ammonia, methanol, methane, and urea. Table 2 lists the composition and mass flow rate of 
process condensate obtained in the plant. 
 

Table 2. Process Condensate Data 
 

 Concentration     (ppm) 
NH3 CO2 CH3OH Urea CH4 

Flow rate 
kg·h-1 

T 
°C 

P 
MPa 

1612 1672 573.4 144 0.91 100000 217 3.75 
 
3.1  Alternatives of treatment on process condensate  
 

A typical technique to treat process condensate is steam stripping. Both 
medium-pressure (MP) steam and low-pressure (LP) steam can be used for stripping. Even 
natural gas can be used to separate the process condensate to reach the allowable emission 
concentration. Natural gas is also used as raw material in ammonia production and its 
flowrate is fixed based on the production throughput. However, due to the limited amount of 
natural gas available, it cannot be used to the full extent. In the current case study, three 
alternatives have been considered after pre-analysis and simulation. These alternatives are 
illustrated in Fig.’s 1, 2 and 3. 

 
The first alternative (Fig. 1) utilizes MP steam for stripping process condensate. The 

chemical components in the condensate are stripped and transferred to the Converter I to be 
used as a raw material. The treated condensate from the stripping column can be used as 



make-up water for boiler or can be discharged directly. In this alternative, both material and 
energy can be recovered from the condensate. This also results in zero emission to the 
environment. Hence, this is a clean process.  

 
The second alternative utilizes saturated humidification using natural gas followed by 

MP steam stripping. The saturated steam leaving from the saturation column and the stripping 
steam from MP steam stripping column are transferred to Converter I thereby recycling all 
the chemicals back to be used as raw materials. The treated condensate can be recovered as 
boiler water or can be discharged directly. This alternative is also clean.  

 
Alternative 3 is saturated humidification using natural gas followed by LP steam 

stripping. The stripping steam leaving the stripping column cannot be used in the production 
system directly due to its low pressure. It is condensed and recycled by the condensate 
separator. The condensate from the condenser is pumped and mixed with the process 
condensate, and separated in saturation column again. The saturated steam from the top of the 
saturation column is transferred to Converter I to avoid the accumulation of the chemical 
components. However, this treatment process cannot reduce the pollution radically. The 
non-condensing gas coming out of the saturation column contains small amount of chemical 
components which would cause environmental pollution if discharged directly into the 
atmosphere. 
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3.2  Formulation of optimization problem under uncertainty 

 
In this work, two objectives have been optimized: maximization of economic benefits 

while minimizing environmental impacts.  
 
Two decision variables identified are condensate inlet temperature (T) and MP/LP 

steam flow rate (F). The value of inlet temperature ranges from 100ºC to 245ºC and that of 
steam flow rate is from 8000 kg/hr to 35000 kg/hr. The remaining operating or equipment 
parameters are assumed to remain fixed during optimization. The inlet temperature and flow 
rate of natural gas is 217ºC and 22000 kg/hr respectively. The number of plates required in 
saturation column as well as the stripping column is 15. 

 
A regression model is developed to model the relationship between the decision 

variables and the objective function using the simulation results of the proposed design 
scheme. This model is used as the basis of the optimization. The parameters used for 
formulating the environmental and economic objectives are listed in Tables 3 - 6. 
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Figure 3. Saturated Humidification followed by LP Steam Stripping  
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The environmental impact index (EII) used to expresses the environmental objective 

is calculated by a short cut approach(10). The “relative” stress caused by each chemical is 
calculated rather than the “absolute” value of the environmental impact caused by each 
chemical. This impact data was retrieved from the U.S. EPA's TRACI data base (11-12). 

 
The environment regulations posed on the ammonia (Cammonia≤ 10 mg/l) and methanol 

(Cmethanol≤ 15 mg/l) concentration in treated water and emission gas are used as constraints for 
this optimization model. The price fluctuation of LP/MP steam is considered as a parameter 
uncertainty in the following work. 

 
 

 
 
Table 3. Price Data 

 
 H2O NH3 CH3OH Natural 

Gas 
Steam 

Price 0.125 
($/ton) 

312.5 
($/ton) 

250 
($/ton) 

160 
($/ton) 

6.25 
($/MMkCal) 

 
 
Table 4. List of Capital Cost 

 
 Saturation 

column 
LP-stripping 

column 
MP-stripping 

column 

Capital Cost（$/yr） 2.25×104 1.88×104 2.63×104 

 
 

Table 5. Normalized Value of Environment Impact Index (Media: Air) 
 

Category 
 

Acidification 
 

Global 
Warming 

 
Eutrophication 

 
Human Health 
Non-Cancer 

EII 

 Factor 
Norm. 
Factor Factor 

Norm. 
Factor Factor 

Norm. 
 Factor Factor 

Norm. 
Factor 

 

NH3 
CH3OH 

CH4 
CO2 

95.485 
0 
0 
0 

1.0000 
0.0000 
0.0000 
0.0000 

0 
0 

23 
1 

0.0000 
0.0000 
0.9583 
0.0417 

0.1186 
0 
0 
0 

1.0000 
0.0000 
0.0000 
0.0000 

3.1826 
0.1093 

0 
0 

0.9668 
0.0332 
0.0000 
0.0000 

 
2.9668 
0.0332 
0.9583 
0.0417 

Σ 95.485  24  0.1186  3.2919   
 
 



Table 6. Normalized Value of Environment Impact Index (Media: Water) 
 

Category 
 

Acidification 
 

Global 
Warming 

 
Eutrophication 

 
Human Health 
Non-Cancer 

EII 

 Factor 
Norm. 
Factor Factor 

Norm. 
Factor Factor 

Norm. 
Factor Factor 

Norm. 
Factor 

 

NH3 
CH3OH 

CH4 
CO2 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0.0590 
0.0294 

0 
0 

0.6677 
0.3323 

0 
0 

 
0.6677 
0.3323 

0 
0 

Σ       0.0883   
 

 
 
3.3  Application of Pareto Optimization under Uncertainty  
 

The optimization methodology discussed in section 2 has been utilized to optimize this 
case study. First, the mean values of objectives are calculated by using Genetic 
Algorithms(13-14) to identify the Pareto frontier for every alternative shown in Fig. 4. Through 
these calculations, it was found that alternative (1) provides the lowest value of profit and 
higher environmental impact compared to other two design alternatives, so it is not 
considered for future optimization. Alternative (2) can yield the highest possible profit and 
relatively low environmental impact. So it is considered as the optimal candidate in 
deterministic optimization. In a magnified view of the Pareto frontier of alternative (3), its 
observed that it is a curve and not vertical. 

 
Secondly, the price of MP/LP steam is treated as uncertain variable in this case. The 

variation in the price expressed by price of heat load ($/MMkcal) follows a normal 
distribution where the expected value is $6.25/MMkcal, and the standard deviation is 
assumed as $1.25/ MMkcal. The probability (P) of price variation is assumed to be 13.4%. 

As a result of this, the Pareto frontiers are shifted according to f = 
_

f + kσy where k is equal 

to 1.5. The comparison of results between deterministic and parameter uncertainty 
optimization are shown in Fig. 5. 

 
It is obvious that the profit decreases with increase in the price of MP/LP steam. As a 

consequence of variation of MP/LP steam price, the Pareto frontiers shift to the left but the 
environmental objective remains unaffected.  

 
Next, the model uncertainty is incorporated by selecting suitable α and β values. In 

this work, it is assumed that the model uncertainty worsens the performance of the chemical 
process by reducing the profit and increasing the environmental impact. The values chosen 
for α and β are: 



α=[0.9,1.1], β=[0.02,0.05].  

 

  
  

Figure 6 illustrate the effect of model uncertainty on optimization. Figure 7 presents a 
comparison of the optimal results for both parameter and model uncertainty. As can be seen 
in Fig. 7, the shifts of Pareto frontiers are different when considering both parameter and 
model uncertainties. Part A in the shift Pareto frontier for alternative (2) is better in terms of 
both economic and environmental objectives, but part B for alternative (2) is not optimal 
compared to that of alternative (3). In other words, some optimal solutions in alternative (3) 
have better process profit compared to part B of alternative (2), however, their environmental 
performance is similar. These results are different from the results obtained for deterministic 
optimization as well as that incorporating only parametric uncertainty. 
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Figure 5. Effect of Parameter Uncertainty on Optimization  
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Fig. 6  Effect of Model Uncertainty on Optimization Result 
 
 
4. Discussion and summary 
 
1) Sustainability of a chemical process shall be enhanced by improving the triple-bottom line 

simultaneously.  
2) Uncertainties should be taken into consideration during optimization, which can change 

the optimization result.  
3) Pareto optimization methodology under uncertainty can be used for identifying the most 

sustainable solution from different design alternatives.  

 
Fig. 7  Optimization under Uncertainty 
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