MONASH University Engineering

Anthony Jessup, Dr Gavin M Mudd[#] Env Eng, Monash Uni

Env. Sustainability Costs of Nickel Laterite v Sulphide

December 2008

3rd Int. Conf. on Sustainability Engineering & Science, Auckland, New Zealand

A GREENHOUSE NIGHTMARE ...

Nickel: A Vital Infrastructure Metal

Overview

- Nickel Resources and Ore Types
 - Sulphide versus Laterite
- Current Global Nickel Mining
- Environmental Sustainability Costs
- Implications for the Future ?

Nickel: Sulphide v Laterites

- Nickel is a reasonably abundant known metal resource, found in mainly in sulphide or laterite (oxide) deposits
 - Ni sulphides: eg. pentlandite, (Fe,Ni)₉S₈
 - Ni laterites: eg. garnierite ('NiO' complex!)
- In general, Ni is more difficult to process than copper, especially Ni laterites
- Historically, most Ni came from sulphides, with increasing Ni now from laterites ...
- Major uses: stainless steel, alloys, etc ...

Nickel Mining v Industrial Growth

Country	Production
Russia	322
Canada	258
Australia	180
Indonesia	145
New Caledonia	119
Colombia	100
Philippines	88
China	80
Cuba	77

Country	Total Reserves†			
Australia	51,000			
Cuba	28,600			
New Caledonia	22,100			
Canada	19,900			
Indonesia	16,200			
Russia	15,800			
South Africa	15,700			
Brazil	12,800			
China	8,700			

Enviro. Sustainability Costs of Ni?

- Given the continuing demand for Ni, and abundance of resources, what are the 'environmental sustainability' costs of Ni?
 - energy, water and greenhouse costs of sulphide versus laterite Ni
- Since Ni mining is dominated by a handful of major mining companies, most of which report on their sustainability performance, it is possible to analyse Ni costs

Nickel Miners & Producers #1

- Vale Ltd The Big Brazilian
 - through takeover of Inco Ltd (major Ni sulphide in Ontario), plus Ni laterites in Pacific (New Cal., Indo.)
- BHP Billiton The Big Australian
 - takeover of WMC Ltd (major Ni sulphide in WA), plus new Ravensthorpe Ni laterite (WA)
- Xstrata Ltd The Big Cheese (Swiss/SA)
 - takeover of Falconbridge Ltd (major Ni sulphide in Ontario), interest in Koniambo Ni lat., New Caledonia
- Eramet Ltd The Big Frenchmen
 - mainly Ni laterite mines, New Caledonia

Nickel Miners & Producers #2

	Operation	Mt/yr	%Ni	%Cu	%Co	kt Ni	kt Cu	kt Co	Mine	Process
sulphides	Inco Sudbury, Canada§	7.69	1.40	1.51	~0.04	81.1	103.8	-	UG/OC	Pyro.
	Thompson, Canada	2.13	2.11	~0.13	•	46.6	~2.3	•	UG/OC	Pyro.
	Mt Keith [†] , Australia	~10.9	0.62	-	•	45.0	-	•	OC	Conc.
	Leinster [†] , Australia	2.6	2.08	-	1	40.4	-	1	OC/UG	Conc.
	Kambalda [†] , Australia	~0.8	~ 3.4	~0.22	~ 0.05	~30	~2	~0.6	UG	Conc.
	Kalgoorlie [†] , Australia	-	-	-	ı	~92.6	-	ı	Smelter	Pyro.
	Kwinana [†] , Australia	-	-	-	ı	~58.1	-	ı	Refinery	Pyro.
	Taimyr, Russia [#]	13.49	1.66	3.02	-	124.3	356.9	-	UG/OC	Pyro.
laterites	Murrin Murrin, Aust.	2.69	1.32	-	0.09	28.9	-	1.94	OC	HPAL
	Sorowako, Indonesia	~5.1	1.88	-	-	70.0	-	-	OC	Pyro.
	Doniambo, New Cal.	~2.9	~ 2.6	-	ı	59.7	-	-	OC	Pyro.
	Yabulu, Australia	NR	NR	-	NR	$\sim 30^{\ddagger}$	-	$\sim 1.8^{\ddagger}$	-	Caron

[†]No production or environmental data reported by BHP Billiton since their takeover of WMC in August 2005. [‡]Approximate annual capacity before recent Ravensthorpe expansion. [§]Platinum group metal grades ~1.51 g/t PGM. [#]~9.3 g/t PGM.

 $\label{eq:concentrator} UG-underground,\ OC-open\ cut;\ Pyro-pyrometallurgical;\ HPAL-high\ pressure\ acid\ leach;\ Conc-concentrator;\ NR-not\ reported.$

Ni Laterite Mining, New Caledonia

Results: Energy & Greenhouse

Results: Energy V Greenhouse

Implications & Ni Future?

- Nickel will continue to be a critical metal in infrastructure (no real alternatives ...)
- Need for improved sustainability reporting
- Although there are relatively abundant resources compared to consumption:
 - most Ni is in lateritic ores
 - most new Ni mines are laterite
 - Ni from laterites is clearly more environmentally costly than sulphides
- Env. costs for Ni will grow rapidly in future

