Quantifying Transport Energy Resilience: Active Mode Accessibility

Stacy Rendall, A/Prof. Susan Krumdieck, Dr. Shannon Page, Dr. Femke Reitsma, Dr. Elijah Van Houten
Energy = Coal, Petrol, Electricity, Biomass, Human Power, etc.

Transport Energy \approx Oil
Motivation

Background - Adaptation

Low Impact

- Change travel time
- Shift mode
- Change destination
- Forgo activity

High Impact
Background
Active Mode Accessibility (AMA):

- The proportion of activities that can be reached by active modes.
- Low AMA: high fuel input required
- High AMA: low fuel input required
Method

Builds upon:

- Accessibility Analysis
Method

Builds upon:

- Accessibility Analysis
- Activity Modelling
For every residence:

1. Measure travel time and distance required to capture activities

2. Select travel mode for each activity

3. Calculate the annual travel and fuel consumption
Method

- For every residence:
 1. Measure travel time and distance required to capture activities
 - **Accessibility Analysis**
 2. Select mode for each activity
 - **Mode Model**
 3. Calculate the annual travel and fuel consumption
 - **Activity Model**
Method

- AMA:
 - Percentage of **four key activities** that can be accessed by active mode
 - Percentage of **trips** that can be met by active mode
Implementation - Current

python

GDAL
Implementation - Future
Case Study

Rolleston
- Pop.: 7,000
- Area: 15 sq. km
- Destinations: 103

Central City
- Pop.: 5,700
- Area: 5 sq. km
- Destinations: 1755
Case Study - Networks
Case Study - Demography

![Bar chart showing age distribution for Central City and Rolleston]
Accessibility & Mode Model
Results – Central City

Activities
- Social
- Retail
- Recreation
- Other
- Cultural
- Maintenance
- Health
- Grocery
- Fast Food
- Component Food
- Tertiary Education
- High School
- Primary School
- Pre-School

Percentage of households

- Walk
- Bicycle
- Drive
AMA Results – Central City

- AMA of key destinations: 100%
- AMA of trips: 100%
Accessibility & Mode Model
Results – Rolleston

![Bar Chart]

- Activities:
 - Social
 - Retail
 - Recreation
 - Other
 - Cultural
 - Maintenance
 - Health
 - Grocery
 - Fast Food
 - Component Food
 - Tertiary Education
 - High School
 - Primary School
 - Pre-School

- Graph shows the percentage of households for different activities, categorized by mode of transport:
 - Walk
 - Bicycle
 - Drive

- The chart indicates the proportion of households engaging in each activity via different modes of transport.
AMA Results – Rolleston

- AMA of key destinations: 66%
- AMA of trips: 59%
Activity Model Results

The graph illustrates the activity model results for different categories such as Grocery, Retail, Social, Pre-School, Primary School, and High School. The x-axis represents the categories, and the y-axis shows the distance traveled in kilometers per year per household. The bar graph comparison of Central City and Rolleston shows different levels of activity for each category.
<table>
<thead>
<tr>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central City</td>
</tr>
</tbody>
</table>
Results

<table>
<thead>
<tr>
<th>Minimum travel demand (all modes)</th>
<th>Central City</th>
<th>Rolleston</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,100 – 2,500 km/year/household</td>
<td>14,000 – 22,000 km/year/household</td>
<td></td>
</tr>
</tbody>
</table>
Results

<table>
<thead>
<tr>
<th></th>
<th>Central City</th>
<th>Rolleston</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum travel demand (all modes)</td>
<td>1,100 – 2,500 km/year/household</td>
<td>14,000 – 22,000 km/year/household</td>
</tr>
<tr>
<td>Minimum VKT</td>
<td>0 km/year/household</td>
<td>9,100 km/year/household</td>
</tr>
</tbody>
</table>
Results

<table>
<thead>
<tr>
<th></th>
<th>Central City</th>
<th>Rolleston</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum travel demand (all modes)</td>
<td>1,100 – 2,500 km/year/household</td>
<td>14,000 – 22,000 km/year/household</td>
</tr>
<tr>
<td>Minimum VKT</td>
<td>0 km/year/household</td>
<td>9,100 km/year/household</td>
</tr>
<tr>
<td>Minimum Fuel</td>
<td>0 L/year/household</td>
<td>911 L/year/household</td>
</tr>
</tbody>
</table>
Conclusions

- Quantifies transportation energy resilience
- Indicates facilities that are inaccessible without private vehicles
- Future: Transport Energy Footprinting