Predicting the unpredictable: Is the electrical spot price chaotic?

David I. Wilson & Bernard Cheng

Department of Electrotechnology Auckland University of Technology New Zealand

Outline

1. Electricity in NZ

2. Performance of predictive models

- 3. Chaos,
 - 1. how to find it,
 - 2. Implications of a chaotic spot price

Sustainable electricity

- Continuous & secure
 - Electricity is inelastic
 - and unstorable
- Without adverse effects on
 - Environment
 - Future generations
- Affordable
- Predictable?

Deregulation

- Since 1996
- Problems
 - □ Self regulating, governed by NZEM, but
 - Market not run effectively.
 - □ Cannot agree on a set of rules.
 - □ Security of supply problems.
 - □ 1st March 2004 Electricity Commission

Recent news

Maui

(ref: Blakeley 2003)

- Project Aqua 524MW capacity.
 Cancelled April, \$45 million invested.
- **Transmission limitations**. Electricity Commission's plan on 4th June, pay to reduce demand in Upper South Island.

Spot price

What causes excessive spot prices?

- We expect affected by :
 - Lake levels
 - □ Derivative (i.e. inflow)
- But this is not always the case in NZ ...
- Pricing signal not timely.

 Infrastructure Stocktake, PwC 2004
- ... Unlike the Nordic Pool.

Predictive models

- What can one model?
 - Unit operations: turbines, local climate, aerofoils
 - ☐ Countrywide e.g.: transmission
 - Market
- How complex?
 - □ Blackbox/heuristic
 - Econometric
- Over what time scale ?
 - Long term planning (20 years)
 - ☐ Medium term (5 years)
 - □ Days/weeks purchasing

Logistic models

$$C = \frac{F}{1 + e^{\theta_0 + \theta_1 t}}$$

Bolger & Tay, 1987

US models – over predicted

Econometric models

Considerably more complicated

Lake levels & flowrates

Model predictions

Econometric models

Performance (rel. error) 2002 Figures

CAE (2002) 0% CAE (1994) -11% MComm (2000) -5% MComm (1994) -5%

Chaotic systems

- Chaos is deterministic
- A parsimonious representation of complex behaviour
- Chaos is difficult to define
 - Dynamics must be nonlinear
 - But we don't require stochastic and/or chaotic inputs to be chaotic
- Sensitive to:
 - □ Parameters & structure
 - Initial conditions
- How can we tell if it is chaotic?
 - Dominant Lyapunov coefficient, λ>0

Sensitivity to initial conditions

A discrete chaotic system: Henon's attractor

$$x_{k+1} = y_k - 1.4 \frac{x_k^2}{x_k} + 1$$
$$y_{k+1} = 0.3x_k$$

Starting from:

$$\left[\begin{array}{c} x_0 \\ y_0 \end{array}\right] = \left[\begin{array}{c} 1 \\ 1 \end{array}\right]$$

But suppose we change the starting point *very slightly*

$$\begin{bmatrix} x_0 \\ y_0 \end{bmatrix} = \begin{bmatrix} 1.000001 \\ 1.000001 \end{bmatrix}$$
Very small Δx

Ways to estimate λ

- Direct methods
 - 1. Lots of carefully controlled experiments
 - 2. Large data sets

- Jacobian methods
 - Estimate from the individual Jacobian matrices

Implementation

- Fortran code LENNS (from Nychka et al)
- Standard numerical optimisation routines (BFGS)
- Some technical modifications
- Large computation requirements
 - □ 50 computers @ 2 hours
 - Embarrassingly parallel
- Matlab for analysis

Weak assumptions on the stationarity of λ

Is there any movement of λ with time?

Spot price & the dominant Lyapunov exponent

Chaotic here

Stable here

Work in progress

- Relate λ to observable trends/outcomes
- Compute λ at different frequencies
 - □ ½ hourly price, 5 min price
 - □ Is λ = f(sample interval) ?

Technical issues:

- 1. Time delay
- 2. Discretisation
- 3. Steady-state offset?

Consequences of chaos

- Chaotic trends are suboptimal & unsustainable
- Chaotic systems are unpredictable
 - □ In the medium & long term
 - ☐ Emarket http://www.energylink.co.nz/emarket.htm
- Unpredictable price increases affect industrial production.
 - □ Infrastructure stocktake reportback, M. Cullen, 2004
- The chaos may be broken by
 - Changing structure:
 - Opening feedback loops
 - Changing parameters

Conclusions

- Spot price excursions not simply correlated to climate
- Previous demand models are
- Spot price exhibits chaos
 - ☐ At times
 - □ Often before excursions
- So can we break the chaotic characteristics?

