Residential Demand Response For Critical Peak Demand Reduction

Samuel Gyamfi, PhD Student
Department of Mechanical Engineering
University of Canterbury,
Christchurch, New Zealand

Supervisors: Dr. S. Krumdieck and Dr. L. Brackney

Residential Peak Demand

- The Problem
- Modeling Approach
- Case Study Results

Electricity Generation Capacity

Problem: Renewable Energy

HYDRO 64% of generation 60 days of storage

Dry Year Problems

- High Spot Price
- Risk of "Cold Showers"
- Risk of Power Cuts

Problem: Dry Year

Average Monthly Wholesale Electricity Prices in New Zealand 1999-2003

Source: Saving Electricity in Hurry: IEA 2005.

Problem: Peak Demand

Demand

Problem: Growing Peak Demand

Residential Peak Demand

Sector	Consumption	Peak
Residential	33%	52%
Industrial	45%	31%
Commercial	22%	17%
Total	100%	100%

Source: NZ Electricity Commission

High Cost of Peak Demand

Transmission Capacity

Ripple Control, Industry Shut Down 40¢ kWh

Diesel 40¢ kWh

Peak Capacity

Gas 25¢ kWh Peaking Hydro 12 ¢ kWh

Base-Load Capacity

Hydro 5¢ kWh

Dinner Time
Power Demand

Solutions

Gas Peaking Generation, New Transmission

Interruptible Load Industry Water Heaters

Demand Response
Commercial
Industry
Residential

Addresses the problem as well as providing a solution

Residential Demand Response

Research Objectives

- Load Disaggregation the behaviour of the different components of the residential load.
- Customer Behaviour in responding to demand response request signals
- Load Shifting Models impact of load shifting on utility's load curve

Modeling Approach

Diversified Demand Method (Arvidson, 1940)

Diversified Demand

$$MDD (av, max)_i = MDD i * ni$$

 $n_i = m * s_i$

MDD (av, max)_i= Maximum average diversified demand per appliance for a group of customers

MDD_i = Maximum diversified demand per customer of that appliance

 n_i = Total number of appliance of that type

m = Total number of households under consideration

s = Appliance saturation rate

Load Characteristic Curves

House Heating

Clothes Dryer

Lighting &

Miscellaneous

Home Freezer

Refrigerator

Source: Turan Goenon, 2008

Feeder Load Calculations:

Hourly maximum diversified demand *MDD*(*t*,*max*)

$$MDD_{(t, \max)i} = MDD_i * n_i * fi(t)$$

 $f_i(t)$ = Hourly variation factor of appliance category i

Maximum load on the Transformer:

$$MLT(t, max) = \sum_{i=1}^{N} MDD(t, max)_{i} = \sum_{i=1}^{N} MDD_{i}*n_{i}*f_{i}(t)$$

n = different appliance categories (e.g. washing machine, heat pump, clothes dryer)

Case Study: Christchurch, 400 homes

Appliance Saturation Rate, New Zealand

Source: Electricity Commission

Maximum Diversified Demand

Calculated Maximum Diversified Demand for 400 houses

Taken from the Chart

Appliances	Appliance saturation rate, s (%)	Total number of appliance=s* 400)	Diversified demand per customer (kW)	Maximum diversified demand (kW)
Domestic Water Heater	87	348.00	0.72	250.56
Heat Pump*	35	140.00	2.60	364.00
Electric Heater**	93	372.00	3.00	1116.00
Clothes Dryer	34	136.00	1.20	163.20
Washing Machine	95	380.00	1.20	456.00
Freezer	64	256.00	0.08	20.48
Refrigerator	31	124.00	0.06	6.82
Fridge/Freezer	80	320.00	0.08	25.60
Microwave/Oven	78	312.00	0.50	156.00
Range	93	372.00	0.55	204.60
Lighting & Misc.	100	400.00	0.54	216.00

Hourly Variation Factors

Source: HEEP, Stoeklein (1998)

Estimated Load Curve Compared with the Measured Load by the Utility

Feeder Demand Response

$$DR(t)_i = \sum_{i=1}^{N} MDD i(t) * dxi(t)$$

DR(t) = Demand Response Load reduction at time t

*MDD*_{*i*}(*t*) = Maximum diversified demand of appliance type at time *t*

 $dx_i(t)$ = Percentage of customers indicating a change demand at time, t

N = Total number appliance types

	Behaviour Factor (<i>dx_i</i>)		
	Morning	Evening	
Washing Machine	17%	11%	
Clothes Dryer	3%	5%	
Vacuum Cleaner	10%	6%	
Range	6%	21%	
Microwave	12%	10%	
Electric Heater	8%	6%	
Heat Pump	15%	14%	

Activity Demand Response

Demand Response: Christchurch

Results Compared with Water Heating Ripple-Controlled Load

Thank You

Illustrative Example

- refrigerator, range, lighting and Misc., then

→ If the number of houses on a transformer = 5
 1.80

$$clothes dryer$$

 → Total of 20 transformers and 100 houses on a residential feeder
 MDD , per , $customer$
 $clothes dryer$

 → Typical house has clothes dryer, refrigerator, range, lighting and Misc., then
 $clothes dryer$

The maximum load on the distribution transformer is given by

$$MLT = \sum_{i=1}^{N} MDDi * n = (1.80 + 0.07 + 0.90 + 0.65) * 5 = 17.1kW$$

For the entire feeder (n=100),:

$$MDD \text{ , per , customer } = \begin{cases} 1.00 & clothes & dryer \\ 0.05 & refrigerat & or \\ 0.50 & range \\ 0.52 & lighting & Mics \end{cases}$$

The maximum load on the entire feeder

$$MLT = \sum_{i=1}^{N} MDD_i * n = (1.00 + 0.05 + 0.50 + 0.52) * 100 = 207kW$$