Transition Engineering

The Spectrum of Survival

Associate Professor Susan Krumdieck Department of Mechanical Engineering University of Canterbury

ICSES Auckland 1-3 Dcember 2010

Sustainability Engineering?

- Electric Cars
- Solar, Wind Energy
- Energy Efficiency
- Biofuels, Combustion, Pollution
- Fuel Cells and Hydrogen
- CO₂ Capture and Sequestration

What do we mean by sustainability?

Do not ask this question ever again

Un-sustainability is the problem

The project is survival

- Society depends on engineered systems for survival.
- What if the engineered systems threaten survival?

Survival: Balance of Benefit & Risk

Safety

CO, Nox Emissions

Risk

Individual Immediate

Security

Peak Oil

Risk

Organization Long Term

Sustainability

Global Climate Change

Risk

System Integration Continuity

Survival Spectrum

Safety

Big ears to hear predators, speed and agility, camouflage

Security

Diet, burrows, high fertility

Sustainability

Predator-Prey Cycle Natural Selection Adaptation Strategies

Individuals

Populations

Species

Adaptation is the Key to Survival

ad•ap•ta•tion or ad•ap•tion n

- 1. the process or state of changing to fit new circumstances or conditions, or the resulting change
- 2. something that has been modified for a purpose
- 3. the development of physical and behavioral characteristics that allow organisms to survive and reproduce in their habitats

Encarta® World English Dictionary © 1999 Microsoft Corporation

Adaptation

Humans are as adaptable as rabbits
A few physical adaptations, but mostly
Shared Cultural Values and Engineering

Human Adaptation Strategy

- When known solutions don't work
- When discover opportunities
 - Innovation
 - Change
 - Transition

Transition Engineering

- Reduce Risks of Un-Sustainability
- System Change for Adaptation
- System Engineering for Constraints

Survival = Balance of Risk & Benefit

Can Engineering really do it?

Survival Requirements:

- Social Values: Safety, Security, Sustainability
- Change and Adaptation to Constraints
- Save the World from Darkness

Engineering for Safety

Safety

History of Safety Engineering

- 1911 American Society of Safety Engineers Founded (ASSE) 62 members
- Result of public outrage over Triangle Shirtwaist Factory Fire in New York
 - 146 young girls
 - All deaths were preventable
 - No regulations existed

www.asse.org

History of Health & Safety Engineering

- 1921 2500 members, Eye protection research
- 1924 1st respirators replace handkerchiefs in chemical plants
- 1933 Manager and worker training programs
- 1936 1st chemical exposure limit standard
- 1936 1st federal government safety standards
- 1958 Fall protection harness developed
- 1964 Safety profession and systems safety

ASSE Code of Conduct

- Protect people, property and the environment through the application of state-of-the-art knowledge.
- Inform the public, employers, employees, clients and appropriate authorities when professional judgment indicates that there is an unacceptable level of risk.
- Issue public statements in a truthful manner.
- Serve the public, employees, employers, clients and the Society with fidelity, honesty and impartiality.

Safety, Health, Environment Engineering

- Occupational Safety and Health Act 1970
- Economics: 2009 OSHA study \$1 invested in safety = \$6 savings to society

Transition Engineering Method

- Projects involved in changing current systems, practices, materials, intensities
- Curtailing un-sustainability Risks
- Embedded in all practice

Safety - Security - Sustainability

Safety Engineering as Model

- 100% solution not possible, but always trying anyway
- No Exemptions
- Everyone Responsible
- Expectations from all Sectors

Safety Engineering as a Model

- Research and Development
- Measurement, Monitoring
- Standards and Best Practice
- Communications and Behaviour
- Responsibility and Enforcement

Transition Engineering Conclusion

Sustainability is Survival

- Public trusts engineers to help them survive
- No Panacea Technology or a Science
- Use lessons of Safety Engineering
- Without Engineering Leadership, Unsustainability is Ensured

